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Shape evolution for Sm isotopes in relativistic mean-field theory
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Abstract. The evolution of shape from the spherical to the axially deformed shapes in the Sm isotopes is in-
vestigated microscopically in relativistic mean-field theory. The microscopic and self-consistent quadrupole
deformation constrained relativistic mean-field calculations show a clear shape change for the even-even
Sm isotopes with N = 82–96. The potential surfaces for 148Sm, 150Sm and 152Sm are found to be rela-
tively flat, which may be the possible critical-point nuclei. By examining the single-particle spectra and
nearest-neighbor spacing distribution of the single-particle levels, one finds that the single-particle levels
in 148Sm ,150Sm, and 152Sm distribute more uniformly.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.Jz Hartree-Fock and random-phase
approximations – 21.60.Fw Models based on group theory – 21.10.Re Collective levels

The equilibrium shapes for finite many-body systems
such as atomic nucleus, atom, molecule, etc. have been a
hot topic in the past several decades. These shapes are
normally not rigid and change as a function of the num-
ber of their constituents. Sometimes these changes can be
quite abrupt and exhibit phase transitional and critical-
point behavior similar to that found in a wide variety of
many-body systems, though the concept of phase transi-
tion is only approximate for finite systems.

Properties of a system in the transition region and in
particular at the critical point can be found by solving the
eigenvalue problem numerically. However, the transition
region is difficult to interpret as they exhibit a compli-
cated interplay of competing degrees of freedom. Yet such
systems are in many respects the most important, as their
structure defines the nature of the transition region itself.

Recently, the concept of such critical-point solutions
has been introduced in the framework of the algebraic
models, in which different shapes (phases) correspond to
dynamic symmetries of some algebraic structure G and
the phase transition corresponds to the breaking of the
dynamical symmetries. In the Interacting Boson Model [1]
G ≡ U(6) and there are three dynamical symmetries char-
acterized by the first algebra in the chain originating from
U(6), that is U(5), SU(3), and SO(6), with spherical, ax-
ially deformed, and γ-unstable shapes. Experimental ex-
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amples of all three types of symmetries can be found in
nuclei, e.g., the U(5) nuclei can occur near closed shells,
SU(3) nuclei can occur in the middle of two neighboring
shells, and the O(6) limit tends to occur in nuclei with
particle-hole configuration. The phase transition between
spherical U(5) and axially deformed shapes SU(3) is of
the first order [2,3]. The phase/shape transition region is
characterized by a pronounced β softness [4]. This char-
acteristic leads to the analytic solution for critical-point
nuclei, called X(5) for the axially symmetric case, and is
based on analytic solutions of the Schrödinger equation
corresponding to a geometric (Bohr) Hamiltonian with a
square-well potential [5]. First examples of X(5) symme-
try in transitional nuclei have been found in 152Sm [6],
150Nd [7], and others in different nuclear regions [8–15].
From the theoretical point of view, the nuclei which cor-
respond the critical point of the phase transition have been
discussed with different potential shape in refs. [16–19].

The critical-point symmetries provide a classification
of states and analytic expressions for observables in re-
gions where the structure changes most rapidly [20]. The
idea of X(5) critical-point symmetry can be visualized
in terms of two coexisting minima in the potential sur-
face, a spherical minimum and a deformed one, whose
energy difference varies with nucleon number. Although
phase transition and critical point have been discussed in
finite systems for many years, their microscopical inves-
tigations are still missing. In fact, a microscopic study is
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necessary and essential for us to understand and recognize
where and how these symmetries occur. The present pa-
per aims at this problem and microscopically studies the
X(5) critical-point symmetry in actually physical systems,
namely atomic nuclei.

The relativistic mean-field (RMF) theory [21] has re-
ceived wide attention because of its successful description
of many nuclear phenomena during the past years [22]. In
particular, the exotic halo phenomena can be understood
self-consistently after a proper treatment of the contin-
uum effect [23–25], the long-existing problem for the origin
of pseudo-spin symmetry in nuclei has been given natu-
rally [26–28], and a new symmetry —the spin symmetry
for the spectrum of an antinucleon has been predicted [29,
30]. It is very interesting to investigate the critical-point
concept in atomic nuclei with this microscopic and self-
consistent RMF theory which will show that 148,150,152Sm
are excellent empirical manifestations of this critical-point
structure.

The basic Ansatz of the RMF theory is a Lagrangian
density where nucleons are described as Dirac particles
which interact via the exchange of various mesons in-
cluding the isoscalar-scalar σ-meson, the isoscalar-vector
ω-meson and the isovector-vector ρ-meson. The effective
Lagrangian density considered is written in the form

L = ψ̄i (i/∂ −M)ψi +
1
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− 1
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where ψ̄ = ψ†γ0 and ψ is the Dirac spinor. Other symbols
have their usual meanings.

The Dirac equation for the nucleons and the Klein-
Gordon–type equations for the mesons and the photon
are given by the variational principle and can be solved
by expanding the wave functions in terms of the eigenfunc-
tions of a deformed axially symmetric harmonic-oscillator
potential [31] or a Woods-Saxon potential [32].

The potential energy curve can be calculated micro-
scopically by the constrained RMF theory. The binding
energy at a certain deformation is obtained by constrain-
ing the quadrupole moment 〈Q2〉 to a given value µ2 in
the expectation value of the Hamiltonian [33],

〈H ′〉 = 〈H〉+ 1

2
Cµ (〈Q2〉 − µ2)

2
, (2)

where Cµ is the constraint multiplier. The deformation
parameter β2 is obtained from the calculated quadrupole
moments 〈Q2〉 for the protons and neutrons through

〈Q2〉 = 〈Q2p〉+ 〈Q2n〉 =
3√
5π
AR2

0
β2, (3)

with R0 = 1.2A1/3.

Table 1. The total binding energy and the quadrupole defor-
mation β2 of the ground states of 144–158Sm calculated by the
constrained RMF theory with effective interactions NL1, NL3,
NLSH and TM1. Available data are included for comparison.

E (MeV) EXP [34] NL1 NL3 NLSH TM1

144Sm 1195.74 1201.28 1198.34 1200.20 1202.03
146Sm 1210.91 1213.83 1211.79 1214.00 1215.51
148Sm 1225.40 1225.95 1225.48 1227.95 1230.04
150Sm 1239.25 1239.59 1239.29 1241.09 1243.47
152Sm 1253.11 1252.78 1253.54 1255.39 1256.18
154Sm 1266.94 1265.50 1267.54 1269.59 1268.67
156Sm 1279.99 1276.98 1280.05 1282.26 1281.58
158Sm 1291.98 1287.57 1291.73 1293.99 1293.08

β2 EXP [35] NL1 NL3 NLSH TM1
144Sm 0.09 0.00 0.00 −0.01 −0.00
146Sm 0.05 0.06 0.08 −0.03
148Sm 0.14 0.15 0.14 0.14 0.10
150Sm 0.19 0.25 0.23 0.21 0.13
152Sm 0.31 0.34 0.30 0.28 0.18
154Sm 0.34 0.35 0.33 0.32 0.33
156Sm 0.36 0.34 0.33 0.32
158Sm 0.36 0.35 0.34 0.33

For the nuclei studied in this paper, the full N = 20 de-
formed harmonic-oscillator shells are taken into account.
This basis is large enough to produce a good convergence
on the binding energy and the deformation in the numer-
ical calculation. The converged deformation is not sen-
sitive to the deformation parameter β0 of the harmonic-
oscillator basis in a reasonable range due to the large basis.
By varying µ2, the binding energy at different deformation
is obtained. The pairing correlation is treated by the con-
stant gap BCS approximation where the pairing gap is
taken as 12/

√
A.

The binding energy and the quadrupole deformation
for the ground state are listed in table 1. The constrained
RMF calculations are carried out with effective interac-
tions NL1 [36], NLSH [37], TM1 [38], and NL3 [39]. For the
binding energy, the data is well reproduced within 0.5%.
Particularly, excellent agreement (within 1 MeV) is ob-
tained for the binding energy in 146–158Sm with NL3. Even
for neutron magic nuclei 144Sm, the difference between the
RMF calculation and the data is less than 3 MeV, i.e., less
than 0.3% relatively. The spherical shapes in 144,146Sm
and the weakly deformed 148Sm are well reproduced. The
deformations in 150–158Sm are a little overestimated by
the theoretical calculations.

Figures 1, 2, 3, and 4 show the potential energy curves
for 144–158Sm from constrained RMF calculations with ef-
fective interactions NL1, NL3, NLSH, and TM1. In each
figure the energy for the ground state is taken as a refer-
ence. Similar patterns are found for all the effective inter-
actions. The ground state of 144Sm is found to be spherical
and has about a 12 MeV stiff barrier against deformation.
Although the ground state of 146Sm is still spherical, its
barrier becomes lower and is around 8 MeV against the
deformation. With the increase of the neutron number,
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Fig. 1. The potential energy curves for 144–158Sm obtained by
the constrained RMF theory with effective interaction NL1.
The ground-state binding energy is taken as a reference.
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Fig. 2. The same as fig. 1, but with NL3.

the ground state gradually moves toward the deformed
side and the potential energy curve becomes softer. Fi-
nally well-deformed 154–158Sm are reproduced.

To examine how the shape of the Sm isotopes changes
with the neutron number, the differences of the bind-
ing energy between the ground state and the state with
the spherical shape for Sm isotopes are presented in ta-
ble 2 in the constrained RMF theory with effective in-
teractions NL1, NL3, NLSH, and TM1. These differences
can tell us how soft the nucleus is against deformation and
may give us a hint on the phase transition of the nuclear
shape. From 144–158Sm, the energy differences between the
ground state and the state with spherical-shape change
from 0 to 15 MeV. There are two jumps in the energy dif-
ferences. The first jump appears at 148Sm and the second
at 154Sm, which suggests the shape change from spheri-
cal to critical-point nuclei, and finally to axially deformed
nuclei. The potential energy curves for 148Sm, 150Sm, and
152Sm are relatively flat, i.e., they are β2-soft nuclei in the
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Fig. 3. The same as fig. 1, but with NLSH.
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Fig. 4. The same as fig. 1, but with TM1.

Table 2. The difference of the binding energy between the
spherical state and the ground state in units of MeV calcu-
lated by the constrained RMF theory with effective interac-
tions NL1, NL3, NLSH and TM1 for 144–158Sm.

NL1 NL3 NLSH TM1
144Sm 0.00 0.00 0.00 0.00
146Sm 0.02 0.11 0.33 0.07
148Sm 2.26 2.67 2.72 1.98
150Sm 6.11 5.19 4.13 3.08
152Sm 9.51 8.02 6.59 3.38
154Sm 12.33 10.73 9.20 4.37
156Sm 14.10 12.61 11.64 6.53
158Sm 14.80 14.36 14.51 8.68

transition region between spherical and axially symmetric
deformed nuclei.

One of the merits of microscopic models such as RMF
theory is that it can provide detailed information on
single-particle levels, shell structure etc., which are very
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Fig. 5. The single-neutron levels for 144–158Sm obtained by
the constrained RMF theory with effective interaction TM1.

important for us to discuss nuclear structure, examine
the deformation-driving effect and understand the physi-
cal origin for the critical-point nuclei. In fig. 5 the single-
neutron levels for 144–158Sm lying between −15 and 0 MeV
are shown. The Fermi levels are presented by the dashed
line. This figure presents results calculated with effective
interaction TM1. The other three effective interactions
give similar single-particle structure thus not presented
here.

From fig. 5 one finds a consistency between the shell
structure evolution and the shape evolution in Sm iso-
topes with increasing neutron number. Namely, for 144Sm,
spherical symmetry is better restored. The deformation
develops with N increasing. The deformation in 146Sm is
still small and the energy gap with N = 82 can be clearly
seen from the single-particle spectra. The critical-point
nuclei 148–152Sm belong to a transition area in which the
N = 82 gaps still exist but are much smaller than that
in 144,146Sm. Starting from 154Sm, the gap with N = 82
disappears. Meanwhile a deformed gap develops around
N = 94. Correspondingly, we observe the well-deformed
154–158Sm. The single-particle spectra in critical-point nu-
clei 148–152Sm are more uniformly distributed, which are
quite different from those in either U(5) spherical or SU(3)
well-deformed nuclei where there are obvious energy gaps.
This characteristic in microscopic shell structure can be
viewed as the signature of the critical-point symmetry.

The nearest-neighbor spacing distribution of the
single-neutron levels in the interval [0,−30] MeV is
shown in fig. 6 which presents more clearly the shell
structure evolution with increasing neutron number. As
seen in fig. 6, most nearest-neighbor spacings are within
[0, 0.4] MeV. However, for 144Sm and 146Sm, there are
several levels lying 4–5 MeV away from their neighbors.
These large spacings correspond, of course, to large en-
ergy gaps between neighboring shells. With increasing
N , the levels distribute more evenly, as shown in the
figure, and one finds roughly Poisson-like distributions
in 148,150,152Sm. For well-deformed nuclei, e.g. 158Sm,
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Fig. 6. The nearest-neighbor spacing distribution of the single-
particle levels in the interval [0, −30] MeV for neutron in
144–158Sm calculated by the RMF theory with effective inter-
action TM1. The energy step is taken as 0.4 MeV.

large energy gaps develop again and the nearest-neighbor
spacing distributions deviate Poisson-like ones. Thus, the
nearest-neighbor spacing distribution of the single-particle
levels seems to provide one of the criteria for identifying
critical-point nuclei.

In summary, the evolution of shape from the spheri-
cal to the axially deformed shapes in the Sm isotopes is
investigated microscopically in relativistic mean-field the-
ory. The even-even Sm isotopes, 144–158Sm, are studied
by the constrained relativistic mean-field theory with all
the most successful effective interactions, i.e., NL1, NL3,
NLSH and TM1. The RMF calculation reproduces very
well the data of the binding energy and the deformation
for the ground states. 148Sm ,150Sm, and 152Sm are found
to be soft against β deformation in their corresponding
potential energy curves. By examining the single-particle
spectra and nearest-neighbor spacing distribution of the
single-particle levels, one finds that the single-particle lev-
els in 148Sm ,150Sm, and 152Sm distribute more uniformly.
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